

Compressive Spectral Light Field Compact Image

Wen Cao* Ehsan Mianji⁺ JONAS UNGER⁺ Linköping University, Sweden

Spectral Light Field Cameras

Contents • Compressive Spectral Light Field Image and Previous Methods

Results and Comparison

• Spectral Light Field Cameras

• Light Field and Spectral Light Field Capture

• Compressive Spectral Light Field Image

• Results

Conventional Cameras

Light Field

Light Field: The light field consists of the total of all light rays in 3D space, flowing through every point and **in several directions**.

Light Field Capture

Camera Arrays e.g., [Wilburn et al. 2002,2005]

Sequential Acquisition e.g., [Levoy and Hanrahan 1996],

Mask Coded Camera e.g.,[Liang et al. 2008]

Mask Coded Camera e.g., [K. Marwah et al. 2013]

Spectral Light Field

 $L(x, y, \mu, \upsilon, \lambda)$

V Angular Domain

 $L(x, y, \mu, v, \lambda)$

Spectral Domain

Spectral Light Field Capture

Micro Lens Array combines with a

spectrometer

e.g., [Zhiwei Xiong et al. 2017]

Lamp Camera Camera Scene Vertical nanopositioner Horizontal nanopositioner

Micro Lens Array combines with a CCA filter e.g., [Miguel Marquezet al. 2015]

Our Goal: Recover Spectral Light Field

Inputs: 2D Coded Sensor Images of Scene

Outputs:5D Spectral Light Field of Same Scene

Motivation

Complicated optical system limit the spectral light field image's application

Conventional Compressive Sensing Method takes several hours to recover the entire information

• Spectral Light Field Definition

• Light Field and Spectral Light Field Capture

Contents • Compressive Spectral Light Field Image

Results

Proposed Method

- a compact spectral light field Image
- a multidimensional compressive sensing method to decrease the computation time.

Our Compact Optical Image

 Compressed light fields are captured using a lenslet array placed in the optical path and a one-hot spectral mask placed on the sensor.

Compressed sensing framework

 $L(s, t, u, v, \lambda)$ Recovered multispectral light field

Training set
Our proposed nD compressed sensing formulation improves the reconstruction time by orders of magnitude as compared to the commonly used 1D compressed sensing techniques without any quality degradation.

Proposed Method ----Key Points

- A novel **spectral-coded mask** for modulating the spectral and spatialangular information **simultaneously**.
- A 5D compressed sensing method is used to reconstruct the full light field information from the under-sampled measurement
- Apply a five-dimensional basis and masks that fit the characteristics of the spectral light field data

Compressive Spectral Light Field Representation

Multidimensional Dictionaries

Compressive Spectral Light Field Image

Reconstruction

5D

• Spectral Light Field Definition

• Light Field and Spectral Light Field Capture

Compressive Spectral Light Field Image

Results and comparison

Results and Comparison ---Image Quality

Table 1: Comparing 5D DCT, 1D AMDE and 5D AMDE using five test spectral light fields under ONE snapshot. Proposed Method in blue. Best values in bold.

Test	Methods	PSNR /dB		SSIM			SA/(°)		
Scenes	5D DCT	1D AMDE	5D AMDE	5D DCT	1D AMDE	5D AMDE	5D DCT	1D AMDE	5D AMDE
Bust	25.388	31.944	31.944	0.741	0.812	0.812	22.6658	10.853	10.853
Cabin	15.798	20.275	20.2754	0.302	0.636	0.636	53.767	26.977	26.977
Circles	15.459	18.494	18.494	0.313	0.530	0.530	35.216	29.588	29.588
Dots	15.454	23.485	23.485	0.247	0.738	0.738	24.661	10.668	10.668
Elephants	18.108	24.880	24.880	0.5761	0.743	0.7435	23.161	17.356	17.356
Average	14.631	22.398	22.398	0.324	0.627	0.627	35.54	24.804	24.804

18.3892

25.0373

25.0373

Results and Comparison ---Time

Table 2: Average Reconstruction Time of 5D DCT, 1D AMDE and 5D AMDE per spectral light field using ONE snapshot.

Methods	Reconstruction Time
5D DCT	40.3 seconds
1D AMDE	2.4 hour
5D AMDE	79.5 seconds

Results and Comparison ----Conclusion

The results show that our novel nD formulation and the resulting 5D multidimensional sensing mask perform as expected with PSNR, SSIM, and SA on par with the 1D approach.

The important difference, however, is that the nD formulation is orders of magnitudefaster, specifically 106 times faster,

Thank you for Listening

This research is a part of PRIME which is funded by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska Curie grant agreement No 956585.

